Finite element approximation of diffusion equations with convolution terms
نویسندگان
چکیده
منابع مشابه
Finite element approximation of diffusion equations with convolution terms
Approximation of solutions to diffusion equations with memory represented by convolution integral terms is considered. Such problems arise from modeling of flows in fissured media. Convergence of the method is proved and results of numerical experiments confirming the theoretical results are presented. The advantages of implementation of the algorithm in a multiprocessing environment are discus...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملapproximation of stochastic advection diffusion equations with finite difference scheme
in this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. we applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. the main properties of deterministic difference schemes,...
متن کاملFinite element approximation for equations of magnetohydrodynamics
We consider the equations of stationary incompressible magnetohydrodynamics posed in three dimensions, and treat the full coupled system of equations with inhomogeneous boundary conditions. We prove the existence of solutions without any conditions on the data. Also we discuss a finite element discretization and prove the existence of a discrete solution, again without any conditions on the dat...
متن کاملA shadowing result with applications to finite element approximation of reaction-diffusion equations
A shadowing result is formulated in such a way that it applies in the context of numerical approximations of semilinear parabolic problems. The qualitative behavior of temporally and spatially discrete finite element solutions of a reaction-diffusion system near a hyperbolic equilibrium is then studied. It is shown that any continuous trajectory is approximated by an appropriate discrete trajec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1996
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-96-00738-7